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I. Abstract 
Most of differential equations that describe the real-world phenomena cannot be solved exactly 
and one must utilize an approximation method to obtain a solution, such as finite difference, finite 
volume, finite element numerical method, etc. The goal of this project is to utilize machine/deep 
learning methods in study of conservation laws that model multi-phase flows. Our project's 
emphasis is on relatively recent methods for solving differential equations that utilize machine 
learning and, specifically, neural networks, motivated by the universal approximation theorem. 
Our approach consists of proposing a trial solution consisting of two parts the first part, satisfying 
the initial/boundary conditions, with no adjustable parameters, and the second part consists of a 
neural network that is trained to satisfy the differential equation by minimizing the squared error 
loss. We have found that the machine learning approximation methods yield more accurate and 
faster results than typical approximation methods. 

 
II. Background 

Differential equations model a variety of phenomena in sciences and engineering. The main focus 
of this project is on time-dependent partial differential equations known as conservation laws that 
are used to model multiphase flows. In particular, these equations are of interest to engineers who 
design nuclear reactor pipes to ensure the optimal flow of gasses and liquids. 
We consider the differential equations stated in [3]. They are a simplified model for the flow of 
gasses and liquids in vertical pipes and are expressed as time-dependent one-dimensional 
conservation of mass laws in terms of volume fractions for the liquid and gas (αl and αg). Since αl 
+ αg = 1, we state only the equation for αl and for simplicity of notation, we drop the subscript l: 
 
 
where α (x, t) is the unknown function denoting the fractional volume of liquid, t and x denote 
the temporal and spatial variables and h is the flux given by: 
 
 
 
 
as well as the initial and boundary conditions, 
 
 
 
 
Typically, these PDE solutions are approximated using numerical methods such as finite 
differences, finite volumes or finite elements [6]. However, we utilize the above stated background 
to generate solutions using neural network method stated in [5]. 



III. Solution Approximation Method 
Method discussed in [5] results in an approximating solution that is given in a differentiable, closed 
analytic form. The main idea is to consider a trial solution written as a sum of two parts. The first 
part is constructed to satisfy the initial/boundary conditions, while the second part is given in terms 
of a neural network whose parameters are learned by minimizing the squared error loss function 
that imposes the governing differential equation. The trial solution is defined by 
 
 
where the first term A(x, t) will be defined to incorporate initial and boundary conditions and the 
second term involves neural network with set of parameters denoted by p that will incorporate the 
differential equation. The appropriate choice for A(x, t) is 
 
 
The boundary conditions state what the fractional volume of liquid is at the entry of the pipe (when 
x = 0) and at the exit of the pipe (when x = 1), while the initial condition (when t = 0) specifies the 
initial distribution of liquid inside the pipe. Here, α-left and α-right are constants given in advance 
and f(x) will be a function that is given in advance. In our case, α-left = 1, α-right = 0, and f(x) 
which is compatible with alpha-l and alpha-r is a piecewise constant function as in [3]. 
 
Next, we need to define the neural network. We have two input variables x and t, one hidden layer 
with 20 nodes, and output N. Each node in the hidden layer is of the form, 
 
 
We utilize the sigmoid activation function. Therefore, our neural network is defined as follows, 
 
 
 
 
In defining the minimization problem, we consider 400 points from the domain [0, 1] x [0, 1], 
obtained by considering 20 equidistant points in the interval [0, 1] in each variable t and x. We 
want to minimize the error by finding the optimal parameter set p satisfying 
 
 
 

IV. Results 
Our results yield accurate results, consistent to traditional methods, such as finite differences at a 
faster rate. This allowed for us to generate a surface, without computationally burdening our 
system. We are confident machine learning methods are also successful in approximating 
equations describing the multiphase flows. 
Following the accuracy results utilizing the methods in [5], we wish to now implement a physics 
informed deep neural network approximation method discussed in [8]. This would allow for a 
more detailed and fine-tuned surface generation. 
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