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ABSTRACT
An important concern for deep learning models is in regard
to robust performance. One aspect of this involves protect-
ing network weights from errors that occur when storing the
weights in hardware. Research has been conducted on appli-
cations of selective protection for the weights of neural net-
works used for image classification. We extend those results
for text classification through the Very Deep Convolutional
Network (VDCNN), and generalize across different data
sets. Experimental results have shown near-optimal perfor-
mance when applying masks across different data sets. Cur-
rent work looks to further understand the properties of the
network weights across our different trained networks.

INTRODUCTION
It is important to ensure that the weights of a network are
robust against errors that occur when storing the weights in
hardware devices. One method used to ensure robustness
involves using error correction in different areas of the net-
work, such as the input or the weights. In order to ensure
robustness, we utilize error correcting codes (ECCs) in order
to try and detect when errors have occurred in the binary
network weights, and if possible, fix the errors.
Since modern neural networks contain many millions of
weights, it is important to optimize the redundancy to per-
formance ratio by applying selective protection. An optimal
trade-off can be recognized by utilizing deep reinforcement
learning (DRL) to capture important areas of a network that
are more prone to cause performance degradation when er-
roneous.
To understand noisy-performance, we present the following
figure for the Floating Point Representation of the AG News
data set:

BACKGROUND
From Huang et al. we adopt the following conventions:

• Redundancy:

# parity check bits
# bits in representation

• Floating Point Weight Representation: 32-bit IEEE 754
Floating Point Standard

• Fixed Point Weight Representation: 8-bit linearly
quantized binary representation

BACKGROUND (CONT.)
As an indicator of cross-dataset generalizability, we define:

% loss = 100 ∗ (1− accuracy
original accuracy

)

Prior works analyze the effectiveness of using various
weight error detection/correction techniques for ensuring
robust performance in image classification convolutional
networks [2], [3]. We seek to understand the generalizabil-
ity of these prior results for other convolutional nets, namely
text classification networks, using the VDCNN present in [1].
We consider the AG News, Sogou News, and Yelp Polarity
data sets, which are respectively English and Chinese News
Categorization, and Sentiment Analysis sets.
The error detection/correction techniques to adopt include a
DRL-based Selective Protection framework as well as weight
nulling when a weight has too many errors to correct.
For the DRL framework, we present the following schematic.

PROBLEM STATEMENT
The weights of a neural network are prone to suffer from er-
rors when stored in hardware. In order to ensure the weights
do not degrade and cause performance issues, we must im-
plement some selective protection to properly balance the
trade-off between redundancy and network performance.
This selective protection will be accomplished through the
use of the noted error correction and detection techniques.

HYPOTHESIS
We hypothesize that similar results to [2] will be achieved by
our classifiers, allowing high performance for text classifica-
tion networks while only selectively protecting the network
weights. We also hypothesize that interchanging masks on
networks trained on different data sets will ensure perfor-
mance higher than non-protected noisy performance.

PROCEDURE
To create our error-correction masks, we integrate a pre-
built DRL framework by [2]. This framework creates net-
work masks to overlay on binary weights in order to indi-
cate to the ECCs of which bits to protect. Under the hood,
the framework consists of dual actor-critic networks using
a Deep Deterministic Policy Gradient. The learning process
consists of adding noise to the weights and reexamining per-
formance. Noise addition is simulated through bit flips oc-
curring at a preset standard Bit Error Rate (BER) of 0.01.
In order to test effectiveness of masks across data sets, we ap-
ply the mask from one data set onto a different data set with
the same technique, and again validate noisy performance.

RESULTS
Network training of AG News, Sogou News, and Yelp Polar-
ity Review data sets on the VDCNN produced models with
the following accuracies:

Dataset Reported Accuracy Achieved Accuracy
AG News 90.17% 90.28%
Sogou News 96.42% 95.78%
Yelp Polarity 94.73% 94.47%

To verify performance of the DRL-based framework for our
use, we present the following performance results when
adding noise to the AG News data set.

Protection Representation Code Ratio Accuracy
Bitmask Float Ideal 0.2507 90.21%
Bitmask Float BCH 0.2499 90.36%
Bitmask Fixed Ideal 0.0331 90.16%
Bitmask Fixed BCH 0.0397 89.93%
Topbits Float Ideal 0.2355 90.49%
Topbits Float BCH 0.2496 90.42%
Topbits Fixed Ideal 0.2224 90.50%
Topbits Fixed BCH 0.1283 90.43%

We display the following generalizability results for AG
News on Sogou news (News → News), AG News on Yelp
(News → Sentiment), and Yelp on AG News (Sentiment
→ News). Similar results appear when substituting Sogou
News for AG News.

Technique Type Accuracy % Loss
AG Sogou 94.73% 1.10%

BitMask Float Ideal AG Yelp 93.64% 0.88%
Yelp AG 87.54% 3.03%
AG Sogou 95.34% 0.46%

BitMask Float BCH AG Yelp 94.14% 0.35%
Yelp AG 88.40% 2.09%
AG Sogou 93.42% 2.46%

BitMask Fixed Ideal AG Yelp 93.49% 1.03%
Yelp AG 88.96% 1.47%
AG Sogou 92.85% 3.06%

BitMask Fixed BCH AG Yelp 93.10% 1.45%
Yelp AG 87.71% 2.85%
AG Sogou 95.47% 0.32%

TopBits Float Ideal AG Yelp 94.13% 0.36%
Yelp AG 90.19% 0.10%
AG Sogou 95.66% 0.13%

TopBits Float BCH AG Yelp 94.42% 0.06%
Yelp AG 90.12% 0.18%
AG Sogou 95.61% 0.18%

TopBits Fixed Ideal AG Yelp 94.41% 0.07%
Yelp AG 89.85% 0.47%
AG Sogou 92.32% 3.61%

TopBits Fixed BCH AG Yelp 94.29% 0.19%
Yelp AG 89.76% 0.57%

For all masks, their relative similarities have been calculated,
and we see minimum similarities of 62.50%, maximum of
98%, and a mean of 80.76%. As an example of the relative
similarities between masks, we present the following mask
comparison for the TopBits Fixed Point Ideal Code Tech-
nique on the Sogou News and Yelp Polarity data sets.

RESULTS (CONT.)
The entries represent the number of bits protected in the
recorded layer.

Dataset Layers 1-12 Layer 13 Layer 14 Layer 15
Sogou 8 1 1 7
Yelp 8 0 0 2

CONCLUSION
We acknowledge a few noteworthy results. The first in-
volves the similarity of the performance between adding
noise to the entire weighted network and adding noise solely
to the linear layers in the network. It is important to draw
attention to the delicate trade-off between where protection
is given. With such a large number of weights in the lin-
ear layers, adding protection to even a single linear bit per
layer may mean removing protection from entire convolu-
tional layers earlier in the network. Due to the vast possible
number of configurations for protection over these DNNs, it
would likely be nearly impossible to reach a similar conver-
gence on performance in a traditional way, and because of
that, this project is a paragon for the usages of DRL.
It is also of interest to note that in many cases, we see pro-
tection for all or nearly all bits in our convolutional layers
(1-12), while the linear layers (13-15) are sparsely protected.
Additionally, it is of interest to note that while the news gen-
eralizability masks seem to work well on all tested datasets,
the Yelp masks do not appear to be as generalizable.
In terms of anomolous results, we note the high percent loss
present in the TopBits Fixed BCH result for the AG Mask
on the Sogou Network. For all other similar techniques, the
average percent loss is 0.464%.
While preliminary results show high compatibility between
masks of different datasets, additional work should be done
in order to understand the reasoning behind the results. It is
important to analyze the datasets in terms of understanding
their similarities so that it is easier to understand the reason-
ing behind the generalizabillity.
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